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The strategy of data fusion has been applied in threat prediction
and situation awareness. The terminology has been standardized
by the Joint Directors of Laboratories (JDL) in the form of a so-
called “JDL Data-Fusion Model.” Higher levels of the model call
for prediction of future development and awareness of the devel-
opment of a situation. It is known that the Bayesian Network is
an insightful approach to determine optimal strategies against an
asymmetric adversarial opponent. However, it lacks the essential ad-
versarial decision processes perspective. In this paper, a data-fusion
approach for asymmetric-threat detection and prediction based on
advanced knowledge infrastructure and stochastic (Markov) game
theory is proposed. Asymmetric and adaptive threats are detected
and grouped by intelligent agent and Hierarchical Entity Aggrega-
tion in level-two fusion and their intents are predicted by a decen-
tralized Markov (stochastic) game model with deception in level-
three fusion. We have evaluated the feasibility of the advanced data
fusion algorithm and its effectiveness through extensive simulations.
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1. INTRODUCTION

Data fusion has been largely applied to symmetric
military warfare in which long-term strategic target de-
velopment processes have developed the signatures or
deductive model-based templates describing the compo-
nent targets of the fielded adversary forces [14], [27].
Asymmetric adversaries, usually utilizing Camouflages,
Concealment, and Deceptions (CC&D), and “unilateral
destruction” are quite unpredictable in their behavior,
tactics, weapons, and the choice of targets. Informa-
tion and patterns of behavior that could provide ad-
vanced warning of hostile intent are often hidden in
a vast background of harmless civilian activity. Auto-
mated processing techniques are needed to augment tac-
tical intelligence-analysis capabilities by automatically
identifying the militarily-relevant features of all avail-
able data of different modalities (e.g., signals intelli-
gence, human intelligence, imagery intelligence, etc.)
and recognizing patterns that are out of the ordinary
[25] and/or indicate probable hostile intent [18].
As asymmetric warfare becomes more prevalent and

introduces new security challenges, there is a critical
need for strategies for providing actionable informa-
tion to military decision makers so that the adversaries’
most likely future courses of actions (COAs) can be pre-
dicted. By successfully assessing possible future threats
from the adversaries, decision makers can make more
effective targeting decisions, plan friendly COAs, mit-
igate the impact of unexpected adversary actions, and
direct sensing systems to observe more efficiently ad-
versary behaviors. Information fusion is an efficient
method for providing this information by combining
diverse data from multiple sources. Many studies have
dealt with the information sources directly, which is the
first level of fusion (object assessment) and some have
aggregated information for level-two fusion–situation
assessment (SA) [22]. Information fusion for threat and
situation analysis is outlined in [13] with reference to
utility value. Others have included SA from cyber-IF
domains [20] with elements of SA ontology develop-
ments [16]. However, to combat the present and future
asymmetric threats to national and international security,
information fusion developments must progress beyond
current level-one fusion paradigms.
In this research, we developed a data-fusion frame-

work for asymmetric-threat detection and prediction in
an urban-warfare setting based on advanced knowledge
infrastructure and Markov (stochastic) game theory. It
consists of four closely coupled activities: 1) Level-one
fusion automates the processing and integration of in-
formation from disparate sources to produce an inte-
grated object state. 2) Level-two fusion automates the
estimation and groups the cooperative objects which
perform common tasks. The main tasks of level-two fu-
sion are estimation and prediction of relations among
entities, to include force structure and cross force rela-
tions, communications and perceptual influences, phys-
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Fig. 1. The overall architecture. (The substructure of the Markov Game engine is also clearly shown in Fig. 2.)

ical context, etc. 3) Level-three fusion automates, infers
and predicts the intentions and COAs of asymmetric
threats. 4) Level-four fusion uses these COAs to task
available sensor assets to optimally minimize cost of op-
erations and decision response time. In particular, asym-
metric and adaptive threats are detected and grouped by
intelligent agent and Hierarchical Entity Aggregation
in level-two fusion and their intents are predicted by
a decentralized Markov (stochastic) game model with
deception in level-three fusion. Game theory is not a
new concept in military and cyber defense decision sup-
port. Existing game theoretic approaches [1] [2] [21]
for threat detection and decision support are based on
static matrix games and simple extensive games, which
are usually solved by game trees. However, these ma-
trix game models lack the sophistication to study multi-
players with relatively large actions spaces, and large
planning horizons. Recently, Brynielsson and Arnborg
propose a game theoretic data fusion approach [30]
via combining higher level command and control (C2)
and Bayesian Network (BN) to solve multiple-decision-
makers problems.
We have implemented Hierarchical Entity Aggrega-

tion and ontology-based Factlet Analysis Function to
detect asymmetric treats at level-two fusion. Factlets
are statements or evidence about the situation in the
battlespace and they form the main input to the level-
two fusion. We have implemented an adversary Markov
game [23] model with three players: Red force (en-

emies), Blue force (friendly forces), and White force
(neutral objects) at level-three fusion. Inherent informa-
tion imperfection is considered and implemented in two
methods: 1) the decentralized decision making scheme;
and 2) deception with bounded rationality. We have
modified our game theoretic sensor management algo-
rithm at level-four fusion.
A software prototype has been developed with a

display module based on the Mixed-Initiative Control of
Autonomous Unmanned Units under Uncertainty (MICA)
OEP [28] to integrate levels 1, 2, 3, and 4 data fusion
and to demonstrate the performance of our proposed
algorithms.
The paper is organized as follows. In Section 2, we

will summarize the technical approach, which includes
overall architecture, hierarchical entity aggregation at
level-two fusion, and Markov game approach at level-
three fusion. Section 3 describes the experimental re-
sults. Section 4 concludes the paper.

2. THREAT PREDICTION AND SITUATION ANALYSIS

2.1. Overall Structure

The overall architecture of our game theoretic data
fusion is shown in Fig. 1. The level-one fusion builds
the tracks of enemy targets from the reported data for-
matted by Data Encapsulation, which is the mechanism
whereby the original data are kept hidden from the user
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and the user can only perform a restricted set of opera-
tions on the data. Level-one fusion also writes the Red
target track table, which contains time, location, target
type beliefs, and other information about each target.
The tracks are based on data from the Blue Unmanned
Air vehicle (UAV) and Airborne Warning and Control
System (AWACS) sensors. Field reports from forward
observers and signal intelligence contributes to event
data. Level-one fusion establishes and maintains tracks
for all ground vehicles, makes track-to-track associa-
tions, eliminates duplicates, and also initiates, maintains
and drops tracks. The Blue tables of tracks of friendly
armament resources contain similar information.
The level-two fusion (situation assessment—SA) per-

forms spatial and temporal processing on tracks pro-
duced by level-one multi-sensor, multi-target track fu-
sion, supplemented with intelligence information from
both structured data sources such as databases and un-
structured data sources such as ontology-based docu-
ments. At this level, Hierarchical Entity Aggregation,
ontology and Factlet Analysis Function are used to clus-
ter Red entities into groups by position, find the group
centers-of-mass, build target group tables, and deter-
mine certain critical events and behaviors over time,
which it formats into frame structures to pass to the
level-three fusion process.
At level-three (threat assessment—TA) fusion, we in-

vestigated and demonstrated the effectiveness of Markov
game theory. An adversarial Markov game framework
is proposed for threat refinement to drive existing
and newly formulated models of threat behavior with
factlets derived from situation refinement to support
the determination of possible enemy course of actions
(ECOAs). An artificial intelligence planning concept,
Hierarchical Task Network, is exploited to decompose
the estimated ECOAs. The decompositions are fed back
into and used in level-two fusion to identify and group
the enemy entities that pose threats.
At level-four fusion (process refinement), the main

tasks are to perform resource allocation and to provide
feedback information for fusions at level 1, 2, and 3 to
adjust the parameters. We use the method developed
by the authors in a Navy funded on-going Phase II
project named “Adaptive Cooperative Path and Mission
Planning for Multiple Aerial Platforms.”
We have conducted the implementation and analysis

of several data fusion approaches at every JDL-model
level, including conscious effort on the display technol-
ogy to the user (as proposed in the Data Fusion Infor-
mation Group (DFIG) [6]). We drive existing and newly
formulated algorithms to support the determination of
possible enemy COA. Asymmetric threats will be iden-
tified efficiently by Hierarchical Entity Aggregation at
level-two fusion and assigned special payoff functions
in our Markov Game framework at level-three fusion so
that the intents of these irrational threats or entities will
be efficiently predicted.

Due to page limitations, here we focus only on
level-two and level-three data fusion and details can
be found in the following subsections. A related paper
summarizing our results with respect to level-one fusion
algorithm will appear elsewhere.

2.2. Level-Two Fusion–Situation Refinement

The objectives of level-two fusion SA include es-
timation as to the measurements and observations that
are available and establishing relationships between en-
tities, events and the environment. An ontology-based
battle-space modeling technique provides feasibility to
the representation and organization of the environmental
observations in a machine-readable manner. It also fa-
cilitates prediction of the potential relationships among
the entities.
The Factlet Analysis Functions execute across the

extent of the Virtual Battlespace as well as estimate
across the objects present and within each analysis per-
spective, to generate both measured and inferred items
of evidence, the “factlets.” These Functions are con-
cerned with establishing the “relationships” between ob-
jects in the Virtual Battlespace. For example, the Motion
Analysis Function considers the movement patterns of
groups (established by the Aggregate Analysis Func-
tion) of military objects such as armored personnel car-
riers. The Motion Analysis Function may conclude that
the current movement pattern indicates a probing be-
havior on the part of the adversary, rather than a full
scale attack. This prediction becomes a factlet.
In our data-fusion framework, Hierarchical Entity

Aggregation [12] [1] [15] (HEA) is exploited to identify
and group the entities that pose threats so that level-three
TA fusion can be performed efficiently because of the
following two major reasons. HEA reduces the ECOA
hypothesis space for level-three fusion by reducing the
number of potential “threats” to consider. In our ap-
proach, applying a Markov (stochastic) game theoretic
algorithm to predict ECOA becomes more feasible. The
other is that HEA can efficiently identify the asymmet-
ric threats. Entity Aggregation plays an important role in
subsequent fusion processing in the way that it provides
aggregates that have the same tactical goal. For exam-
ple, the capabilities and resources of a single terrorist
are vastly different from the capabilities and resources
of a team of terrorists. As a result, HEA will produce
different results when considering a single terrorist or
a team of terrorists as a threatening entity. To improve
the performance of asymmetric adversary identification,
we propose a feedback structure based on a Hierarchi-
cal Task Network (HTN) so that the revised asymmetric
tactics and strategy can be decomposed and fed back to
the HEA.
These identified asymmetric units with the asso-

ciated aggregations will be handled and refined by
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Fig. 2. Structure of level-three fusion (threat refinement).

our proposed Markov games in level-three TA data
fusion.

2.3. Level 3 Data Fusion–Threat Refinement

2.3.1. A Decentralized Stochastic Game Theoretical
Model

As shown in Fig. 2, a decentralized Markov game
is used to model the evolution of ECOAs originated
from an initial prediction based on Hierarchical Entity
Aggregation.
A Markov (stochastic) game [23] is given by (i) a

finite set of players N, (ii) a finite set of states S, (iii)
for every player i 2N, a finite set of available actions
Di (we denote the overall decision space D =£i2NDi,
where£ is the multiplication operation), (iv) a transition
rule q : S£D!¢(S), (where ¢(S) is the space of all
probability distributions over S), and (v) a payoff func-
tion r : S£D! RN . For our threat prediction problem,
we obtain the following discrete time Markov game:
Players (Decision Makers)–Although in our dis-

tributed (decentralized) Markov game model, each
group (cluster, team) makes decisions, there are three
main players: enemy, friendly force, and neutral play-
ers. All clusters of enemy (friendly force, or neutral)
can be considered as a single player since they have a
common objective.
State Space–All the possible COAs for enemy and

friendly force consist of the state space. An element
s 2 S is thus a sample of enemy and friendly force COAs
composed of a set of triplets (resource, action verb,
and objective). As an example, an enemy COA might
be: the Red team 1 (resource) attacks (action verb) the
Blue team 2 (objective). Similarly, for the friendly force
COAs, resource is a friendly asset and objective is an
adversary entity. Therefore, we can denote the state and
state space as

s= (sB ,sR,sW)

S = SB £ SR £ SW

where sB 2 SB , sR 2 SR, and sW 2 SW are the COAs of
Blue (friendly) force, Red (enemy) force, and White
(neutral) force, respectively.
sB = f(rBi ,aBi ,oBi ) j rBi 2 RB ,aBi 2 AB ,oBi 2OBg where

RB , AB and OB are the set of the resource, action, and
objective of Blue force, respectively.
Similarly, the states for red force and white force are

denoted as:

sR = f(rRi ,aRi ,oRi ) j rRi 2 RR,aRi 2 AR,oRi 2ORg

sW = f(rWi ,aWi ,oWi ) j rWi 2 RW,aWi 2 AW,oWi 2OWg

REMARK 1 It is well known that civilians often play an
active role in wars. That is, they are not just passively
static but might purposefully take actions to help one
side in a battle to minimize their losses or achieve some
political purpose. Unfortunately, existing game theoretic
models usually do not consider this situation, although
collateral damage has been considered in a paper on
a two-player game model by Dr. Cruz et al. [10]. In
this research, a three-player attrition-type discrete time
dynamic game model is formulated with two opposing
forces and one civilian player that might be either neu-
tral or slightly biased. In our current implementation,
the White units only care about their possible losses.
For example, when a dangerous location is detected,
normal White units will find a COA to keep them-
selves as far as possible from the harmful location. In
the case where Red force poses as White for decep-
tive purpose, our algorithm will deem the Red force as
White until abnormal activities or deceptions are de-
tected.

Decision–At every time step, each Blue group
chooses a list of targets with associated actions and con-
fidences (note that: the probability distribution over the
list of targets, i.e., the sum of the confidences should be
equal to 1) based on its local battle field information,
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such as the unit type and positions of possible targets,
from level-two data fusion. Let DBi denote the decision
space of the ith Blue team. Each element dBi of D

B
i is

defined as

dBi =
©
(aBi , t

B
i ,p

B
i ) j aBi 2 AB , tBi 2OB ,0< pBi · 1,

P
pBi = 1

ª
(1)

where pBi is the probability of the action-target couple
(aBi , t

B
i ), which is defined as the action a

B
i to target t

B
i .

Therefore, the decision space of Blue A1 =£i2RBDBi .
(Compared with the standard definition of Markov game
model reviewed in the beginning part of Section 2.3.1,
DBi is the action set of ith member of Blue team, which
is deemed as a single player. So, generally, the meaning
of A1 is same as that ofD1 in the standard definition.) As
an example, for the Blue small weapon UAV 1 in Blue
team 1, its action might be dB1 = f(attack, Red fighter 1,
0.3), (fly to, Red fighter 2, 0.5), (avoid, Red fighter 3,
0.2)g.
Similarly, each Red cluster (obtained from the level-

two data fusion) determines a probability distribution
over all possible action-target combinations. Let DRi
denote the decision space of the ith Red cluster. Each
element dRi of D

R
i is defined as

dRi =
©
(aRi , t

R
i ,p

R
i ) j aRi 2 AR, tRi 2OR,0< pRi · 1,

P
pRi = 1

ª
(2)

where pRi is the probability of action aRi to target
tRi . Therefore, the decision space of Red force A

2 =
£i2RRDRi . A possible action for Red platform 1 (Red
fighter 1) is dR1 = f(attack, small weapon UAV 1, 0.6),
(move to, Blue solider 2, 0.2), (avoid, Blue solider 1,
0.2)g.
REMARK 2 Decision and action verbs are different
concepts. A decision is a set of triplets with associated
probabilities while an action verb is just a component
of the triplet composed of resource, action verb and
objective. All actions are included in A1 for player 1
(Blue force) and A2 for player 2 (Red force). All action
verbs are enumerated in AB for player 1 (Blue force)
and AR for player 2 (Red force).
The decisions of White objects are relatively simple.

The main action type is movement. Let DWi denote the
decision space of the ith White unit. Each element dBi
of DBi is defined as

dWi =©
(aWi , t

W
i ,p

W
i ) j aWi 2 AW, tWi 2OW,0< pWi · 1,

P
pWi = 1

ª
(3)

where pWi is the probability of action a
W
i to target t

W
i .

Transition Rule–Due to the uncertainty properties
of military environments, we assume that the states
of the Markov game have inertia so that the decision

makers have more chance in the pursuit of the objective
from previous actions. We define an inertia factor vector
for each player. Without loss of generality, we take the
Blue force as an example, ´B = (´B1 ,´

B
2 , : : : ,´

B
mB
)T, where

mB is the number of the teams or clusters of Blue force,
and 0· ´Bj · 1, 1· j ·mB . So, for the jth team of the
Blue player, there is a probability of ´Bj to keep the
current action-target couple and a probability of (1¡ ´Bj )
to use a new action composed of action-target couples.
There are two steps to calculate the probability dis-

tribution over the state space S, where sk, sk+1 are states
at time step k and k+1 respectively, and aBk , a

R
k and a

W
k

are the decisions of Blue force, Red force, and White
force, respectively, at time step k.
Step 1 With the consideration of a inertia factor

vector ´B , we combine the current state with decisions
of both players to obtain fused probability distributions
over all possible action-target couples for the Red and
Blue forces. To do this, we first decompose the current
state into the action-target couples for each team of
each player (Red force, Blue force, or White force).
Let ªB

j (sk) denote the resulting action-target couple
related to the jth team of the Blue player. For example,
if there is one triplet of (Blue team 1, attack, Red
fighter 2) in the current state sk, then the action-target
couple for Blue team 1 (the first team of Blue force)
is ªB

1 (sk) = (attack, Red fighter 2). Secondly, for each
specified team, say the jth cluster of Blue player 2 (Blue
force), we fuse its action-target couples via modifying
the probability of each possible action-target couple
based on the following formula

p̄B((aBj , t
B
j ) j sk)

=

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

pBj (1¡ ´Bj ), if (aBj , t
B
j ,p

B
j ) 2 dBj

and (aBj , t
B
j ) =2 fªB

j (sk)g
pBj (1¡ ´Bj )+ ´Bj , if (aBj , t

B
j ,p

B
j ) 2 dBj

and (aBj , t
B
j ) 2 fªB

j (sk)g
´Bj , if (aBj , t

B
j ,p

B
j ) =2 dBj

and (aBj , t
B
j ) 2 fªB

j (sk)g
0, if (aBj , t

B
j ,p

B
j ) =2 dBj

and (aBj , t
B
j ) =2 fªB

j (sk)g

:

(4)

There are four cases in Eq (4): 1) The action-target
couple (aBj , t

B
j ) only occurs in the current action of the

jth cluster of the Blue player and is not in the current
state sk, which can be mathematically represented by
(aBj , t

B
j ,p

B
j ) 2 dBj and (aBj , tBj ) =2 fªB

j (sk)g. Then we know
the probability of (aBj , t

B
j ) in current state sk is 0 and

probability of (aBj , t
B
j ) in current action is p

B
j . So, accord-

ing to the definition of inertia, the fused probability of
the action-target couple (aBj , t

B
j ) is p

B
j (1¡ ´Bj ) +0(´Bj ) =
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pBj (1¡ ´Bj ). 2) The action-target couple (aBj , tBj ) hap-
pens both in the current action of the jth cluster of
the Blue player and in the current state sk. Then we
know the probability of (aBj , t

B
j ) in the current state

sk is 1 and probability of (a
B
j , t

B
j ) in the current ac-

tion is pBj . So, according to the definition of inertia,
the fused probability of the action-target couple (aBj , t

B
j )

is pBj (1¡ ´Bj )+1(´Bj ) = pBj (1¡ ´Bj ) + ´Bj . 3) The action-
target couple (aBj , t

B
j ) only occurs in the current state sk,

and then we know the probability of (aBj , t
B
j ) in current

state sk is 1 and probability of (a
B
j , t

B
j ) in the current

action is 0. So, according to the definition of inertia,
the fused probability of the action-target couple (aBj , t

B
j )

is 0(1¡ ´Bj )+1(´Bj ) = ´Bj . 4) The action-target couple
(aBj , t

B
j ) occurs neither in the current state sk nor in the

current action of the jth cluster of the Blue player, and
then we know the probability of (aBj , t

B
j ) in the current

state sk is 0 and probability of (a
B
j , t

B
j ) in the current

action is 0. So, according to the definition of inertia,
the fused probability of the action-target couple (aBj , t

B
j )

is 0(1¡ ´Bj )+0(´Bj ) = 0.
Similarly, the new probability distribution for the jth

team of the Red player (Red force) is

p̄R((aRj , t
R
j ) j sk)

=

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

pRj (1¡ ´Rj ), if (aRj , t
R
j ,p

R
j ) 2 dRj

and (aRj , t
R
j ) =2ªR

j (sk)

pRj (1¡ ´Rj ) + ´Rj , if (aRj , t
R
j ,p

R
j ) 2 dRj

and (aRj , t
R
j ) 2ªR

j (sk)

´Rj , if (aRj , t
R
j ,p

R
j ) =2 dRj

and (aRj , t
R
j ) 2ªR

j (sk)

0, if (aRj , t
R
j ,p

R
j ) =2 dRj

and p(aRj , t
R
j ) =2ªR

j (sk)

:

(5)

The new probability distribution for jth team of White
player (White force) is

p̄W((aWj , t
W
j ) j sk)

=

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

pWj (1¡ ´Wj ), if (aWj , t
W
j ,p

W
j ) 2 dWj

and (aWj , t
W
j ) =2 fªW

j (sk)g
pWj (1¡ ´Wj )+ ´Wj , if (aWj , t

W
j ,p

W
j ) 2 dWj

and (aWj , t
W
j ) 2 fªW

j (sk)g
´Wj , if (aWj , t

W
j ,p

W
j ) =2 dWj

and (aWj , t
W
j ) 2 fªW

j (sk)g
0, if (aWj , t

W
j ,p

W
j ) =2 dWj

and (aWj , t
W
j ) =2 fªW

j (sk)g

:

(6)

Step 2 We determine the probability distribution
over the all possible outcomes of state sk+1,

q(sk+1 j sk,aBk ,aRk ,aWk )

=
mBY
j=1

p̄B((aBj , t
B
j ) j sk)

mRY
j=1

p̄R((aRj , t
R
j ) j sk)

£
mWY
j=1

p̄W((aWj , t
W
j ) j sk) (7)

when

sk+1 =
mB[
j=1

f(rBj ,aBj , tBj )g
mR[
j=1

f(rRj ,aRj , tRj )g
mW[
j=1

f(rWj ,aWj , tWj )g,

otherwise, q(sk+1 j sk,aBk ,aRk ,aWk ) = 0. Where mB is the
number of the teams or clusters of the Blue player (Blue
force), mR is the number of the teams or groups of the
Red player (Red force) and mW is the number of the
units of the White player (White force). f(rBi ,aBi , tBi )g
is the set of all possible (with positive probability)
triplets for the ith team of the Blue player. ThereforeSmB
i=1f(rBi ,aBi , tBi )g contains all the possible (with posi-

tive probability) triplets for the Blue force. From step
1, we know that the fused probability of each speci-
fied (aBj , t

B
j ) is p̄

B((aBj , t
B
j ) j sk) defined in equation (1).

With the assumption that all teams of Blue force are
independent, we obtain the overall probability of Blue
force,

QmB
j=1 p̄

B((aBj , t
B
j ) j sk). Similarly,

QmR
j=1 p̄

R((aRj , t
R
j ) j

sk) and
QmR
j=1 p̄

W((aWj , t
W
j ) j sk) are the overall probabil-

ities of the Red and White force, respectively. So the
probability distribution over the all possible outcomes of
state sk+1 (composed of all possible sub-states of Blue,
Red, and White force) can be calculated via equation
(7).
Payoff Functions–In our proposed decentralized

Markov game model, there are two levels of payoff
function for each player (Blue, Red or White).
The lower (local) level payoff functions are used by

each team or cluster to determine the team actions based
on the local information. For the jth team of Blue force,
the payoff function is defined as fBj (s̃

B
j ,d

B
j ,W

B
k ), where

s̃Bj μ s is the local information (note that in a distributed
and partial observable framework, local information
for each player means the battle or state information
is available to the player.) obtained by the team, and
WB
k , the weights for all possible action-target couples
of Blue force, is announced to all Blue teams and
determined according the top level payoff functions by
the supervisor of Blue force.

fBj (s̃
B
j ,d

B
j ,W

B
k )

=
X

(aB
i
,tB
i
,pB
i
)2dB

j

wB(j,aBi , t
B
i ,W

B
k )p

B
i g

B(j,aBi , t
B
i , s̃

B
j )

(8)
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where, wB(j,aBi , t
B
i ,W

B
k ) will calculate the weigh for any

specified action-target couple for the jth team of Blue
force from the WB

k , p
B
i is the probability of the action-

target couple (aBi , t
B
i ), and g

B(j,aBi , t
B
i , s̃

B
j ) will determine

the gain from the action-target couple (aBi , t
B
i ) for the

jth team of Blue force according to the positions and
features, such as platform values and defense/offense
capability, of the Blue and Red platforms. Similarly, we
obtain the lower level payoff functions for the jth team
of Red or enemy force,

fRj (s̃
R
j ,d

R
j ,W

R
k )

=
X

(aR
i
,tR
i
,pR
i
)2dR

j

wR(j,aRi , t
R
i ,W

R
k )p

R
i g

R(j,aRi , t
R
i , s̃

R
j ) (9)
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j

wW(j,aWi , t
W
i ,W

W
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W
i g

W(j,aWi , t
W
i , s̃
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(10)

REMARK 3 For some asymmetric threats, such as sui-
cide bombers, the payoff functions may only consider
the loss of the Blue side. For some camouflage and con-
cealment entities, their objectives are to hide themselves
and move close to the Blue units. Other deception units
will do some irrational and additional movements to
hide their true goals.

REMARK 4 People usually think of a military conflict
situation as a zero-sum game–a game with a winner
and a loser. In zero-sum game theory, the players have
opposite objectives. If one player maximizes an objec-
tive function, the other automatically minimizes it. This
is equivalent to a player maximizing an objective func-
tion and the other player maximizing the negative of the
same function. Since the sum of the objective functions
is zero, the game is called a zero-sum game. But when
there are significant differences between the cultures
of the Red and Blue forces and significant differences
in the valuations of their assets and their opponent’s
assets, the zero-sum game approach in general is not
representative. For example, a Blue objective might be
to preserve as much of the Blue assets and to destroy
as much of the Red assets as possible. However, re-
cent experience with terrorist type battles suggests that
the Red force may not be as concerned as the Blue
force with preserving its own assets. The objectives in
such a situation are not opposite of each other and a
nonzero-sum approach would be much more appropri-
ate.
The top (global) level payoff functions are used to

evaluate the overall performance of each player.

JB =
X
k

24 mBX
j=1

fBj (s̃
B
j ,d

B
j ,W

B
k )

35 (11)

JR =
X
k

24 mRX
j=1

fRj (s̃
R
j ,d

R
j ,W

R
k )

35 (12)

JW =
X
k

24 mWX
j=1

fWj (s̃
W
j ,d

W
j ,W

W
k )

35 (13)

where k is the time index. In our approach, the cal-
culation of the lower level payoffs are distributed and
sent back to commander/supervisor via communication
networks.

REMARK 5 Since the gain functions gB(j,aBi , t
B
i , s̃

B
j )

for Blue force, gR(j,aRi , t
R
i , s̃

R
j ) for Red force and

gW(j,aWi , t
W
i , s̃

W
j ) for White force are different functions,

asymmetric force and cost utilities can be straightfor-
wardly represented in our model. In addition, after an
irregular adversary is detected, a different type of gain
function will be assigned dynamically.

REMARK 6 In our Markov game model, the states
used in the control strategies are the estimates of the
future systems states. These estimates will evaluate or
update following the Markov decision process in the
Markov game framework, in which the interactions are
considered. At each time k, the process will be repeated
based on the observed current system states.

Strategies–In this project, we have tried several well
known types of strategies. Here we only give a brief
description about three of them:
Pure Nash Strategies with a finite horizon. In game

theory, the Nash equilibrium (named after John Nash
[17] who proposed it) is a kind of optimal collective
strategy in a game involving two or more players, where
no player has anything to gain by changing only his or
her own strategy. If each player has chosen a strategy
and no player can benefit by changing his or her strategy
while the other players keep their’s unchanged, then the
current set of strategy choices and the corresponding
payoffs constitute a Nash equilibrium. In our approach,
we use a game search tree to find the solution.
Mixed Nash Strategies. A mixed strategy is used

in game theory to describe a strategy comprised of
possible actions and an associated probability, which
corresponds to how frequently the action is chosen.
Mixed strategy Nash equilibria are equilibria where
at least one player is playing a mixed strategy. Nash
proved that that every finite game has Nash equilibria
but not all have a pure strategy Nash equilibrium.
Correlated Equilibria [26]. Unlike Nash equilibria,

which are the concept of equilibria formulated in inde-
pendent strategies, correlated equilibria were developed
from correlated strategies in non-cooperative games.
The correlated equilibrium of a Markov game describes
a solution for playing a dynamic game in which players
are able to communicate but are self-interested. Based
on the signals, which are generated by the correlated
devices and announced to each decision maker, players
choose their actions according to the received private
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signals. There are two types of correlation devices: au-
tonomous and stationary devices. An autonomous cor-
relation device is a pair D = (((Mi

n)i2N ,dn)n2N), where
(i) Mi

n is a finite set of signals for player i at time
step n, and (ii) dn :M(n)!¢(Mn), Mn =£i2NMi

n and
M(n) =M1£M2£ ¢¢ ¢£Mn¡1. A stationary correlation
device is a pair D = (((Mi)i2N ,d)), where d 2¢(M) and
M =£i2NMi. Actually, a stationary correlation device
is a special case of an autonomous correlation device,
where Mi

n is independent of n and dn is a constant func-
tion that is independent of n.
Given a correlation device D, we define an extended

game G(D). The game G(D) is played exactly as the
original game, but at the beginning of each stage n, a
signal combination mn = (m

i
n)i2N is drawn according to

the probability function dn(m1,m2, : : : ,mn¡1) and each
player i is informed of min. Then each decision maker
must base his choice of actions on the received signal.
Any deviator will be punished via his min-max value.
The punishment only occurs if a player disobeys the rec-
ommendation of the device. Every Markov game with
an autonomous correlated device admits a correlated
equilibrium [26].

REMARK 7 In our proposed approach, the solution to
the Markov game model is obtained via a K time-step
look-ahead approach, in which we only optimize the
solution in the K time-step horizon. We set K as 5
during the simulations of the Section 3–Experiments.
Actually, this suboptimal technique is used successfully
for calculations in games such as chess, backgammon,
and monopoly.

2.3.2. Hierarchical Task Network
Once the ECOA hypotheses have been generated,

they must be evaluated. However, since the generated
hypotheses are not directly observable, they are not suit-
able for correctness testing. As with any hypothesis test,
observables must be identified. These observables act
as indicators to refute or support ECOA hypotheses. A
Hierarchical Task Network (HTN) planner [11] is em-
ployed to decompose ECOA hypotheses into observable
task sequences.
A construct known as the Hierarchical Task Network

(HTN) provides a representation of tasks at various
levels of specificity. The HTN not only mimics the
variation in specificity found in military echelons, it also
allows a computational construct for analyzing ECOAs.
In our game theoretic approach to level-three fusion
(threat assessment), the HTN is employed to provide a
method for decomposing high-level ECOAs into more
specific tasks. The HTN representation is the basis of
most modern planning algorithms. It is based on the
concept that humans plan by decomposing tasks into
smaller ones until a sequence of tractable tasks are
found that satisfy the objective [7]. These are tasks that
the fusion processes attempt to infer or observe directly
and are assumed to be tractable.

3. EXPERIMENTS

In the simulation part, we build a virtual battle-space
and a typical urban scenario based on the ontology con-
cept, which is an explicit, formal, machine-readable se-
mantic model that defines the classes (or concepts) and
their possible inter-relations specific to some specified
domain. To simulate our data fusion approach, we im-
plemented and tested our battle-space, scenario and al-
gorithms on our prototype software with developed and
funded cooperative path planning and mission planning
algorithms [8], [9], [24].

3.1. Scenario Description

We used a scenario shown in Fig. 3 to demonstrate
the performance of our proposed threat prediction and
situation awareness algorithm. In the shown urban en-
vironment, the Blue force’s missions are to capture two
bridges and to do security patrol on the main roads con-
necting the two bridges. The Blue ground force con-
sists of 3 teams of three soldiers each with sniper rifles.
The Red force includes 3 armed fighters and 3 asym-
metric adversaries hiding in and acting like the White
objects (the civilians and vehicles). We assume there
is an asymmetry in total forces between Blue side and
Red side. Blue has more soldiers than Red. Moreover,
the objectives of Blue side and Red side are asymmet-
ric: the objectives of Red side are to kill Blue forces
without considering the loss of themselves and the con-
sideration of collateral damage. The main challenge for
both sides is to understand the situation from the fused
sensor data and predict the intent of the opponent under
the “believed” war situation.

REMARK 8 In this scenario, the kill probability (of
each weapon type) and the target value of each unit
(Blue, Red, and White force) are pre-specified.

3.2. Implementation

To demonstrate our approach, we developed sim-
ulation software (Fig. 4) as a controller module for
the MICA (Mixed Initiative Control of Automa-Teams)
Open Experimental Platform (OEP) [28].
For the scenario (Fig. 3), the possible actions for

blue side are “Blue Team 1 move to Bridge 1,” “Blue
Team 2 Attack Red Fighter 2,” or “Blue Team 3 Halt.”
In general, RB = fBlue Team 1, Blue Team 2, Blue
Team 3g, AB = fMove to, Attack, Haltg, and OB = fRed
Fighter 1, Red Fighter 2, Red Fighter 3, Bridge 1,
Bridge 2, Dummy, Detected Asymmetric Threatsg. The
possible actions for red force are “Fighter 1 attack Blue
team 1,” “Asymmetric threat acts as a civilian.” In gen-
eral, RR = fFighter 1, Fighter 2, Fighter 3, Asymmet-
ric threatg, AR = fMove to, Attack, Act as a civilian,
Haltg, and OR = fBlue team 1, Blue team 2, Blue team
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Fig. 3. A simulated scenario–urban warfare for combating guerrilla forces.

Fig. 4. Simulation Software–a controller module for MICA OEP
virtual battlespace.

3, Bridge 1, Bridge 2, Dummyg. The actions for White
side include “Civilian 1 move to safe place,” “Civilian
2 move to Bridge 1,” and “Civilian 3 move to dan-
gerous place.” Mathematically, RW = fCivilian 1, Civil-
ian 2,: : :g, AW = fMove to, Haltg, and OR = fBridge 1,
Bridge 2, Dummy, Safe place, Dangerous placeg.
In this simulation we set all inertia values to 0.1 and

we also assume that the there is no measurement error
for the Blue, Red, and White forces.
The objective of the Blue force is to save Bridge 1,

Bridge 2, Blue teams, and Civilians; and eliminate Red
Fighter 1, Red Fighter 2, Red Fighter 3 and possible
asymmetric threats. The goal of the Red side is to De-
stroy Bridge and Kill Blue teams (we assume that Red
force has to kill Blue teams nearby before destroying
Bridge 1 or 2). The White force’s goal is to protect civil-
ians. Each side will estimate the information of damage
status (probability and expectation value) and calculate
its cost function based on the unit values: Bridge (100),
Blue team (50), Red Fighter (20), Asymmetric threat
(50), Civilian (0 for “don’t care about collateral dam-

Fig. 5. Result of a simulation run.

age” or 10 for “care about collateral damage”). We set
the kill probability to 0.5.
To solve the Markov game problem, we have con-

ducted a numerical procedure to compute the strate-
gies with a K-step look-ahead horizon. We first con-
vert the Markov game to several MDPs (one MDP for
each player with every possible combination of K-step
strategies of the other players) and several one-step
static matrix games (one game for each player at every
current system state). Then existing algorithms (MDP
MATLAB toolbox and Gambit [29]) will be exploited
to solve the MDPs and matrix games.

3.3. Experiments

For the scenario, in a specific simulation run (Mark-
ov game approach with correlated equilibrium) as
shown in Fig. 5, Blue team 1 and Blue team 3 were
assigned to secure Bridge 1 and Bridge 2, respectively,
almost for the whole simulation period of 30 minutes.
Blue team with 3 Blue soldiers was doing security pa-
trol on the two major roads connecting two bridges and
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Fig. 6. Damage comparison of various options.

some important areas. On the other hand, Red fighters
and asymmetric adversaries are trying their best to kill
Blue forces. The first battle happened when Red Fighter
2 tried to attack Blue Team 2 with the help of an asym-
metric White vehicle with deception (hiding in White
vehicles). During this period, one asymmetric adversary
vehicle, which posed civic activities at first and carried
out abnormal activities during the battle, is detected and
killed. Without the help of the Red vehicle, Red fighter
2 was killed by Blue team 2. Almost at the same time,
the asymmetric adversaries near Bridge 1 and Bridge
2 were attacking the Blue team 1 and 2. At this stage,
two civilians were detected and killed as asymmetric
adversaries. Without the help from the asymmetric ad-
versaries with deception, Red fighter 1 and 3 were killed
by Blue team 1 and 3 at Bridges 1 and 2, respectively.
In this specific run, there is no loss of Blue soldiers
since our algorithm predicted the intents of the Red side
correctly and promptly.
In addition to the explained run, we performed many

experiments. We compared the results using the various
options, such as without game theoretic fusion (without
level-two or level-three fusion, and a Bayesian Network
approach), without asymmetric-threat prediction (with
level-two fusion but the payoff function of game model
at level-three fusion doesn’t change dynamically), game
approach with mixed Nash strategy, game approach
with correlated equilibria, and the game approach with-
out collateral damage consideration in the cost function
of Blue side. Since the simulation is stochastic, the re-
sults consist of the mean of 10 runs for each case, which
are shown in Fig. 6 (Only the damage information for
the Blue side is shown). From the damage comparison
results, we can see that our Markov game approach with
correlated equilibrium and deception consideration for
threat detection and situation awareness is better than
the other methods except the game approach without
collateral damage consideration.

4. CONCLUSIONS

Game theoretic tools have a potential for threat
prediction that takes uncertainties in Red plans and
deception possibilities into consideration. In this paper,
we have evaluated the feasibility of the Markov game
theoretic data fusion algorithm. The effectiveness has
been demonstrated through extensive simulations. The
scalability and stability analysis of our game theoretic
approach is one direction of future research.
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